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Following a short report of our preliminary results �Sheeba et al., Phys. Rev. E 79, 055203�R� �2009��, we
present a more detailed study of the effects of coupling delay in diffusively coupled phase oscillator popula-
tions. We find that coupling delay induces chimera and globally clustered chimera �GCC� states in delay
coupled populations. We show the existence of multiclustered states that act as link between the chimera and
the GCC states. A stable GCC state goes through a variety of GCC states, namely, periodic, aperiodic, long-
and short-period breathers and becomes unstable GCC leading to global synchronization in the system, on
increasing time delay. We provide numerical evidence and theoretical explanations for the above results and
discuss possible applications of the observed phenomena.
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I. INTRODUCTION

Kuramoto, Battogokh, and Shima discovered �1–3� an in-
teresting spatiotemporal pattern which was later named chi-
mera by Abrams and Strogatz �4,5�. The name chimera,
which literally refers to something that is composed of seem-
ingly incompatible or incongruous parts, was coined for this
phenomenon because a group of identical oscillators splits
into two groups of completely different character. Since its
discovery �1,2,4�, various theoretical and numerical develop-
ments have been reported on the stability of chimera states
and their existence in systems with varied structures �4,6�,
including time delay �7�. It is clear that the chimera state
cannot be attributed to partial synchronization. The occur-
rence of partial synchronization in a population of noniden-
tical oscillators is not surprising. On the other hand, if an
identical group of oscillators splits into synchronized and
desynchronized groups, it is called chimera. Therefore, the
discovery of chimera came as a surprise in the study of syn-
chronization phenomenon in complex systems.

By and large, synchronization in coupled oscillator sys-
tems has been analytically and numerically investigated in a
rigorous manner over the past years �9,10�. Possible routes to
global synchronization and methods to control synchroniza-
tion have also been proposed �11,12�. However, complete
understanding of the effects induced by coupling delay in
synchronization of coupled oscillator systems is still an open
problem. It is well known that time delay occurs in real
physical systems. For example, in a network of neuronal
populations, there is certainly a significant delay in propaga-
tion of signals. In addition there can also be synaptic and
dendritic delays. Other examples include finite reaction times
of chemicals and finite transfer times associated with the
basic mechanisms that regulate gene transcription and
mRNA translation.

The nature of coupling in coupled oscillator systems has
been conventionally considered as instantaneous during ear-
lier studies. One of the main reasons for this assumption is
that it substantially simplifies the analysis of the system. In
addition, such an approximation is more often physically jus-
tified. However, the fact is that the consideration of time
delay is vital for modeling real life systems. Furthermore, as

we will demonstrate in this paper, certain interesting dynami-
cal phenomena in complex systems are characteristic of time
delay and they will not occur in systems without time delay.
Since the introduction of time delay increases the effective
dimension of the system, one can expect certain complex
phenomena to be explained in a better way in models of real
physical systems when delay is included.

In this paper, following our Rapid Communication �13�,
we present a more detailed discussion of the effects of cou-
pling delay in inducing chimera and globally clustered chi-
mera �GCC� states in systems of coupled identical oscillator
populations. By a GCC state, here we mean a state where the
system splits into two different groups, one synchronized and
the other desynchronized, each group comprised of oscilla-
tors from both the populations. Since a global clustering
�mixing� of oscillators from both the populations occur in
this case, we call this state a GCC. This is different from the
chimera state where one of the populations is synchronized
while the other is desynchronized �4� �see Fig. 1 for an illus-
tration. Fuller details are given in Sec. II�. In addition, we
find the existence of multiclustered chimera and GCC states
that are induced by time delay. In the multiclustered states
there are more than one synchronized groups �that contain
oscillators from the same population in the case of chimera
and from different populations in the case of GCC� and the
rest of the oscillators in the populations are desynchronized.
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FIG. 1. �Color online� Occurrence of stable chimera and GCC
states in system �1�. Black and green �gray� lines represent oscilla-
tors in the first and the second populations, respectively. Here
�f ,h�= �sin��� , cos����, �1=n�2=n� with n=0, A=0.4, B=0.6, and
�=2 for the chimera and �=4 for the GCC.
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We present a detailed possible analytical explanation for the
numerically observed phenomena.

The paper is organized as follows: in Sec. II we explain
the numerical methods and analysis carried out. We also ex-
plain the numerical method to calculate the modified order
parameter. In Sec. III, we discuss the breathing and unstable
nature of the chimera and GCC states and explain the differ-
ent types of breathers that occur in the system under study.
We discuss the existence of multiclustered states in Sec. IV.
Sec. V provides analytical evidence and support of the nu-
merical results discussed in the paper. We discuss possible
applications of the chimera and GCC states in real physical
systems in Sec. VI. Finally in Sec. VII we summarize the
results of the paper.

II. NUMERICAL STUDIES

Let us consider a system of two populations of identical
oscillators coupled through a finite delay, represented by the
following equation of motion

�̇i
�1,2� = � −

A

N
�
j=1

N

f��i
�1,2��t� − � j

�1,2��t − �1��

−
B

N
�
j=1

N

h��i
�1,2��t� − � j

�2,1��t − �2�� ,

i = 1,2, . . . ,N . �1�

Here � is the natural frequency of the oscillators in the
populations and it is the same for all the oscillators in both
the populations making all of them identical. However, in
order to differentiate one population from the other we set
the initial distribution of the phases of the first population to
be uniformly distributed between 0 and � and that of the
second population to be uniformly distributed between � and
2�. The coupling strengths are quantified by the parameters
A and B that refer to coupling strengths within and between
populations, respectively. The functions f and h are 2� peri-
odic that describe the coupling. N refers to the size of the
populations. A schematic representation of this system is
given in Fig. 2.

Synchronization within a population can be characterized
by using the complex mean-field parameters

X�1,2� + iY�1,2� = r�1,2�ei��1,2�
=

1

N
�
j=1

N

ei�j
�1,2�

.

Here r= �1 /N���� jcos � j�2+ �� jsin � j�2 is also called the co-
herence parameter which measures the synchronization
within a population. When r=1, there is complete synchro-
nization in the system since in this state the phases of all the
oscillators are the same. When r takes values in between 0
and 1 there is either desynchronization or clustering in the
population. In general, when r takes a constant value, the
corresponding state is a stable state, and when r varies with
time, the state is either a breather or an unstable state. How-
ever, synchronization between populations and global clus-
tering cannot be characterized using these mean-field param-
eters, since they represent average phases of the oscillators
within a population. �1 and �2 quantify coupling delay within
and between populations, respectively. A typical example of
such a system is the two groups of interacting neurons in the
brain such as those in the cortex �say population 1� and the
thalamus �say population 2� �14�. Another example of such a
system is two layers �or columns� of interacting spin torque
nano-oscillators, that need to be synchronized in order to
generate coherent microwave power �18�.

The occurrence of various synchronization states in sys-
tem �1� is schematically represented in Fig. 3. Panel �a� rep-
resents a state of individual synchronization in the two popu-
lations where r�1�=1 and r�2�=1. However in this state the
entrainment phases are different. Panel �b� is a chimera state
where r�1�=1 and r�2��1. Panels �c� and �d� represent the
GCC and the multiclustered GCC, respectively, where r�1�

�1 and r�2��1 for both the cases. Panel �e� represents a
global synchronization state where r�1�=1 and r�2�=1, but the
entrainment phases are equal unlike the case of individual
synchronization �panel �a��.

We numerically simulated Eq. �1� and discovered a moti-
vating phenomenon of the existence of GCC states �note that
system �1� consists of two populations of identical oscilla-
tors� as shown in Fig. 1, and reported briefly in �13�. Inter-
estingly enough we found that the coupling delay induces
such phenomena where the system of identical delay-coupled
populations splits into desynchronized and synchronized
groups. This splitting can occur either within the populations
or between the populations, depending upon the value of
time delay for a given set of control parameters. The former
represents the chimera and the latter is the GCC, as noted
earlier. Further, both the chimera and the GCC states need
not be stable but they can either breathe or can be unstable as
will be discussed later in Sec. III.

Numerical considerations

For all the numerical simulations we use Runge-Kutta
fourth-order routine with a time step of 0.01 and we have
also confirmed that the results are not affected by decreasing
the time step below 0.01. All the numerical figures depicted
in this article are plotted after allowing a transient time of at
least 2000 units, to reduce the likelihood of the presence of
transients that may be mistaken for a dynamical behavior.
Actually, we have eliminated the first 2000 time steps before
seeing the results and then the numerical plots are shown for

Population−I Population−II

FIG. 2. Schematic representation of system �1� with N=3 com-
prised of two populations of all to all coupled oscillators; the oscil-
lators within each population are identical. Here solid lines repre-
sent coupling within a population �with strength A� and dotted lines
represent coupling between populations �with strength B�.
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small windows �100 or 200 time steps� toward the end of a
simulation that lasted for 30000 time units. In addition, we
fix N=32 for numerical illustrations, although we have veri-
fied that the results are independent of the size of the system
�for some details for N=64, see Sec. III, Fig. 6, and the
corresponding discussion�. We also fix �1=n�2=n�, where
0�n�1. This condition pertains to the logic that the cou-
pling delay within a population is always less than the cou-
pling delay between the populations.

Since we also found that the chimera and GCC states need
not be stable but can breathe depending upon the value of the
coupling delay �details are given in the following sections�,
we need to characterize such breathers. The mean-field �co-
herence parameter� r quantifies synchronization within a
population and therefore it can be used to quantify a breath-
ing or unstable chimera. On the other hand, as mentioned
earlier, global clustering/synchronization cannot be quanti-
fied using this order parameter. Hence, in order to quantify a
breathing GCC numerically, after allowing the transients, we
separate out the synchronzied group from the desynchro-
nized one. Note that, both the synchronized and desynchro-
nized groups have oscillators from both the populations.

We set a condition that �i 	t=mT=� j 	t=mT �modulo 2��, for
all i , j �here T denotes a particular time and m=0,1 ,2 , . . .
denotes discrete time steps of the numerical integration�. The
numerical equivalence for the above condition is up to six
decimals in our calculation. Those oscillators which satisfy
this condition are synchronized and remain synchronized for
all times and are neglected so that we end up with the de-
synchronized group �that comprises oscillators from both the
populations�. While calculating the modified order param-
eter, we have to specify the minimum size of the synchro-
nized group that is we can choose how reasonably big a
synchronized group can be. For example, if there are only
two oscillators that have equal phases for all times, they
cannot be considered as a group �given the large N� and
hence we have to specify a minimum number of oscillators
that satisfy the condition in order to be called as a synchro-
nized group; the rest are considered as desynchronized oscil-
lators. In our calculations for N=32 and 64, we have taken
this minimal value as 5.

Let the size of the desynchronized group be NDS. Now we
can calculate the order parameter of this group as

rDSei�DS
=

1

NDS �
j=1

NDS

ei�j
DS

, �2�

where NDS=2N−NS. This order parameter rDS can be used to
quantify both the chimera and GCC states and is also valid
for cases where there exists more than one synchronized
cluster. Such multicluster states also occur for model �1�
which is discussed in Sec. IV. Thus we define a cluster by
imposing the condition mentioned in the previous paragraph,
and identify the number of oscillators with the same phase,
say �i,j =	 j, i=1,2 , . . .m, where m is the size of cluster j.
This process can be repeated for any number of clusters and
each cluster can be characterized by the order parameter rn
and the mean phase �n. While specifying the size of clusters
in multiclustered GCC states, they have to be chosen to be
relatively lower than the size of a synchronized group in a
GCC state �where there is only one cluster�.

III. BREATHER AND UNSTABLE STATES

While a chimera or GCC is in the breather state, the phase
of the synchronized group remains unaffected, but those of
the desynchronized group fluctuate. The order parameter of
the desynchronized group also fluctuates accordingly. The
time delay parameter � affects the stability of the chimera
and the GCC states. Typical illustration of the occurrence of
stable, breathing and unstable GCCs are shown in Fig. 4
where the time evolutions of the phases of oscillators in the
desynchronized group are plotted. For n=0, A=0.7, B=0.4,
and �f ,h�= �sin��� , sin����, when �=0.85 �Fig. 4�a��, the
GCC state is stable. The desynchronized group of oscillators
remain desynchronized, asymtotically. On increasing � to
1.01 �Fig. 4�b��, we find that the GCC state loses its stability
and ends up in what is called a breathing GCC state. In this
state, the phase of the oscillators switches between synchro-
nized �frequency suppressed� and desynchronized states.
This breather illustrated in Fig. 4�b� is a periodic breather as

Population−1 Population−2

(a)

(b)

(c)

(d)

(e)

FIG. 3. Schematic representation of phase portraits of the states
of synchronization in system �1�. �a� Individual synchronization in
both the populations, �b� chimera, �c� GCC, �d� multiclustered
GCC, and �e� global synchronization. Open circles represent syn-
chronized group of oscillators and the closed circles represent the
desynchronized oscillators.
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the switching process occurs periodically. Upon increasing �
further to 1.25 �Fig. 4�c��, one can visualize the example of
an unstable GCC, where a desynchronized state loses its sta-
bility and a synchronized state becomes stable.

There are different types of breathers in chimera and GCC
states, namely periodic, aperiodic, and unstable breathers
�see Figs. 5 and 7�. Typical short and long periodic breathers,
defined in a relative sense, are illustrated in Fig. 5, for both
the chimera and the GCC state. For the chimera, we plot the

time evolution of the order parameter r�2� and the corre-
sponding phases �i

�2� of the second population �since the first
population is synchronized� in Figs. 5�a� and 5�b�, for two
different values of �. For the GCC the order parameters rDS

and the corresponding phases �i
DS are plotted for two differ-

ent values of � in Figs. 5�c� and 5�d�. For given values of
system parameters, when �=2.3 we have a long period chi-
mera breather. Upon increasing � to 2.9 we have a short
period chimera breather. Long and short period GCC breath-
ers occur on further increasing � to 3.6 and 4, respectively.
For the specific cases of the breathers illustrated in Fig. 5, the
desynchronized group switches between the states of fre-
quency suppressed synchronization and desynchronization,
corresponding to r�2�,DS=1 and r�2�,DS�1, respectively. In
Fig. 6, we have illustrated that the results are unchanged with
the size of the system by plotting periodically breathing chi-
meras for two different values of N. In Figs. 6�a� and 6�b� we
have plotted the time evolution of the order parameter r and
the time evolution of the phases of the second population,
respectively, for N=32 and in Figs. 6�c� and 6�d� we have
plotted the same for N=64.

Breathers need not be periodic; they can also be aperiodic.
See Fig. 7 for the illustration of a aperiodically breathing
chimera and GCC states, where switching between different
desynchronized states �the corresponding r�2� or rDS oscil-
lates between 0 and �1� occurs in an aperiodic manner. Plot-
ted in �a� and �c� are the order parameters of the desynchro-
nized population �r�2�� for the chimera and in �b� and �d� are
the corresponding time evolution of the phases. Similarly, in
�e� and �g� the order parameters of the desynchronized group
�rDS� �obtained by neglecting the synchronized group, as ex-
plained earlier� are plotted with the corresponding time evo-
lution of the phases in �f� and �h� that show aperiodic desyn-
chronization windows. The chimera and GCC states also
become unstable depending on the value of the time delay
parameter, where the oscillators in the desynchronized
population/group remain desynchronized for a while, after
which this state loses its stability and all the oscillators lock
to one phase, that is, the desynchronized population/group
becomes synchronized among themselves. The unstable chi-
mera is shown in Figs. 7�c� and 7�d� and the unstable GCC is
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FIG. 4. Transition from �a� stable GCC through �b� periodic
breather to �c� unstable GCC upon increasing the value of � as �a�
�=0.85, �b� �=1.01, and �c� �=1.25 for �f ,h�= �sin��� , sin����. Here
n=0, A=0.7, and B=0.4. Time evolution of �i

DS are plotted. Black
and gray lines represent oscillators in the first and second popula-
tions, respectively. In this and the following numerical figures, we
show only the desynchronized oscillators and the synchronized ones
are not shown.
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FIG. 5. Illustration of typical long �gray� and short �black� pe-
riodic breathers of the chimera ��a� and �b�� and GCC ��c� and �d��
states for A=0.3, B=0.2, n=1, �f ,h�= �sin��� , sin����. Here for chi-
mera �=2.3 �long period� and �=2.9 �short period�. For the GCC,
�=3.6 �long period� and �=4 �short period�. The order parameters
r�2� and rDS, and the corresponding phases �i

�2� and �i
DS are plotted

against time for chimera and GCC, respectively.
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FIG. 6. Illustration of breathing chimera for two different values
of the system size N to demonstrate that the results are unchanged
with N. Here �f ,h�= �sin��� , cos����, A=0.5, B=0.3, n=1 and �
=1.9. N=32 for �a� and �b� N=64 for �c� and �d�.
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shown in �g� and �h� �after allowing 2000 time units for the
transients to pass, as mentioned in subsection Sec. II�. As a
consequence of the chimera or GCC state losing its stability,
a two-clustered synchronized state becomes stable. That is,
when the chimera state becomes unstable, the individual syn-
chronization state �as shown in Fig. 3�a�� becomes stable,
while for the unstable GCC, a state comprising of two groups
of oscillators that are locked at two different phases becomes
stable. The breather and unstable chimera/GCC states are not

transient effects. As we have already mentioned in subsec-
tion Sec. II, we have eliminated 2000 time steps before see-
ing the results and the numerical plots are shown for 100 or
200 time step windows toward the end of a simulation that
lasted for 30 000 time units. We also waited further more to
see if aperiodic breathers collapse, but we find them to be
steady dynamical states.

The representation of stable, breathing, and unstable
chimera/GCC in the phase plane is shown in Fig. 8. The
black line in Fig. 8 is the stable limit cycle attractor of the
synchronized population/group. This is always the same unit
circle irrespective of the value of the entrainment frequency
of the synchronized population/group. The gray region rep-
resents the desynchronized population/group which is stable
in �a�, breathing in �b� and becomes unstable in �c� of Fig. 8.

IV. MULTICLUSTER STATES

Multiclustering is a phenomenon that commonly occurs
while studying synchronization dynamics. For the global
clustering phenomenon studied in this paper, multiclustered
GCC states occur due to time delay. Typical examples of
two-clustered and three-clustered GCC states are illustrated
in Fig. 9 where the time evolutions of the phases of the
synchronized oscillators are plotted. While chimera states are
a link between sychronized and desychronized states �8� �see
also analytical explanation�, the multicluster GCC states are
a link between the two �since we have two populations�
types of chimera states. As we increase the delay parameter
�, the multicluster GCC state of the type shown in Fig. 9 and
the GCC state occur for certain values of � in between the
occurrence of chimeras. This is easily evident from Figs. 1
and 9. For the same values of all the other parameters as in
Fig. 1, these two figures show the occurrence of multiclus-
tered states in between the chimera or GCC states for in-
creasing values of �. When �=2, we have the chimera �with
population-1 synchronized and population-2 desynchronized,
see Fig. 1 �left panel��. On increasing � to 2.8 we get a
two-clustered GCC state as shown in Fig. 9 �left�. One clus-
ter contains oscillators only from the first population and the
other contains oscillators from the second population. The
desynchronized group of this state contains oscillators from
both the populations. For �=3.2 we again get a chimera
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FIG. 8. Phase portraits showing the limit cycle of the synchro-
nized population/group �the black line� and desynchronized
population/group �gray region�. �a� stable chimera/GCC state �b�
breathing chimera/GCC state and �c� unstable chimera/GCC. Here
X=r cos � and Y =r sin �, where r and � are the mean-field
parameters.
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FIG. 7. Illustration of aperiodic and unstable chimera ��a�–�d��
and GCC ��e�–�h�� breathers for �f ,h�= �sin��� , cos����, A=0.6, B
=0.3, n=1. Here �=1.8 for �a� and �b� �aperiodic chimera�, �=2.3
for �c� and �d� �unstable chimera�, �=5 for �e� and �f� �aperiodic
GCC� and �=4 for �g� and �h� �unstable GCC�.
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FIG. 9. �Color online� Occurrence of multicluster GCC states in
system �1�. �left� Two-clustered ��=2.8� and �right� three-clustered
��=3.7� GCC states. Other parameter values are the same as those
of Fig. 1. Black and green �gray� lines represent oscillators in the
first and second populations, respectively. Here we have plotted
only the synchronized group of oscillators.
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�with population-1 desynchronized and population-2 syn-
chronized, not shown here� and for �=3.7 we get a three-
clustered GCC state shown in Fig. 9 �right�.

The above three-clustered GCC state has three clusters
each of which has oscillators from both the populations,
which is different from the two-clustered state. This differ-
ence in the two- and the three-clustered GCC states are due
to the following reason: the two-clustered GCC state occurs
in between two chimera states and the three-clustered GCC
state occurs in between a chimera and a GCC state. Further,
in between two chimera states and in between a chimera and
a GCC state there can be more number of multiclustered
states, depending upon the size of the cluster we choose. On
increasing � to 4, we get a GCC state as shown in Fig. 1
�right panel�.

Therefore we find that, on increasing/decreasing � �start-
ing with the state where both the populations are synchro-
nized separately�, the chimera first occurs, and further in-
crease in � causes switching between the two chimera states.
Here the two chimera states necessarily mean state-1 where
population-1 is synchronized and population-2 is desynchro-
nized and vice versa for state-2. This switching incorporates
an intermediate chimeralike multicluster state where each of
the synchronized clusters contains oscillators solely from one
of the populations �as shown in Fig. 9 left panel�. Further
increase in � results in multiclustered GCC states, as shown
in Fig. 9 �right�, leading to stable GCC states. On increasing/
decreasing � further, this stable GCC state follows the fol-
lowing sequence to end up in global synchronization: stable
GCC, long-period breather, short-period breather, aperiodic
breather and unstable GCC leading to global synchroniza-
tion. Further increase in � from the global synchronization
state leads to a stable GCC by following the above men-
tioned route in the reverse order. These results are summa-

rized in Table I for a specific set of parameters. As may be
noted from the table, depending upon the values of the pa-
rameters A, B, and �, the behavior repeats itself periodically.
Therefore in order to visualize the occurrence of this series
of phenomena one can either increase or decrease � depend-
ing upon where we stand in the parameter space.

V. STABILITY OF THE SYNCHRONIZED
AND DESYNCHRONIZED STATES

It is generally difficult to exactly pinpoint the occurrence
of a GCC state in parameter space analytically. Our under-
standing so far �8� reveals that chimera states are a natural
link between synchronized and desynchronized states. In ad-
dition, our numerical evidence confirms that, on increasing �
for a given set of system parameters, chimera and GCC
states occur periodically between stages of synchronization
and desynchronization. Therefore one naturally needs to
identify the boundaries that separate regions of synchroniza-
tion and desynchronization and expect chimera/GCC states
to occur near those boundaries.

In order to find the boundaries, we analyze system �1� in
the continuum limit N→
. In this limit, a probability density
for the oscillator phases can be defined as ��1,2��� , t�d�,
which describes the number of oscillators with phases within
�� ,�+d�� at time t. This distribution ��1,2��� , t� obeys the
evolution equation

���1,2�

�t
= −

�

��
���1,2�v�1,2�� , �3�

where v�1,2� are given by

TABLE I. Occurrence of chimera and GCC for various values of the delay parameter � �other parameter
values are �f ,h�= �sin��� , cos����, n=0, A=0.4, B=0.6�.

S. No. Value of � State Description

1 2.0 Chimera
Population-1 synchronized and population-2

desynchronized

2 2.8 Two-clustered GCC

Two synchronized groups and one desynchronized
group all containing oscillators from both the

populations.

3 3.2 Chimera
Population-1 desynchronized and population-2

synchronized

4 3.7 Three-clustered GCC

Three synchronized groups and one
desynchronized group all containing oscillators

from both the populations.

5 4.0 GCC

One synchronized group and one desynchronized
group all containing oscillators from both the

populations.

6 4.1 Breathing GCC
One synchronized group and one desynchronized

group that oscillates between different states.

7 4.12 Unstable GCC

One synchronized group and one desynchronized
group that oscillates and becomes synchronized

after a while.

8 4.13 Global Synchronization One synchronized group.
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v�1,2� = � − A

0

2�

f�� − ����1,2���,t − �1�d�

− B

0

2�

h�� − ����2,1���,t − �2�d� . �4�

The functions ��1,2��� , t� and �f ,h� are real and 2� periodic
in �, so they can be expressed as Fourier series in �, that is,

���,t� = �
k=−





��t�ke
ik�, f��� = �

k=−





fke
ik�

h��� = �
k=−





hke
ik�. �5�

Substituting ��1,2��� , t� and �f ,h� into the evolution equation,
we get

�̇l
�1,2� + il�̂�l

�1,2� = 2il��
k=1




�ak�l−k
�1,2� + ak

��l+k
�1,2�� , �6�

where

�−l
�1,2� = �l

��1,2�, �̂ = � − �Af0 + Bh0� �7a�

and

ak = �Afk�k
�1,2��t − �1� + Bhk�k

�2,1��t − �2�� . �7b�

Now, the linearized form of Eq. �6� reads as

�̇k
�1,2� = − ik�̂�k

�1,2� + ikak, �8�

where the Fourier components for 	l	k are neglected since
l= �k are the only possible nontrivial unstable modes, �0
=1 /2� is the trivial solution corresponding to incoherence
�desynchronization� and fk and hk are coefficients of the Fou-
rier series of the functions f and h. Now by considering only
the nontrivial kth Fourier mode �k, and considering the linear
stability of the desynchronized state �k=0, we arrive at the
eigenvalue equation of that mode,

��k − Āe�k�1 + i�0�2 − B̄2e2�k�2 = 0, �9�

where Ā= ikfkA, B̄= ikhkB, and �0=k�̂. Equation �9� leads to
the pair of eigenvalue equations

�k = Āe−�k�1 � B̄e−�k�2 − i�0. �10�

These eigenvalues characterize the stability of the desyn-
chronized state. This desynchronized state loses stability
when the real part of the eigenvalue crosses the imaginary
axis. Therefore, in order to obtain the stability boundary we
assume �k=−i� /�, where � is an arbitrary parameter, so that
we can find the kth stability region in a parametric form as

B = � kA
	fk	cos�n� − � f�
	hk	cos�� − �h�

;

� = ��k��0� + A	fk	sin�n� − � f� � B	hk	sin�� − �h��−1,

�11�

where fk=−i	fk	ei�f, hk=−i	hk	ei�h, and �1=n�2=n�. The
overall stability of the desynchronized state is determined by
the overlap of these domains for all the modes.

Now it is also of importance to investigate the stability of
the synchronized state for which we consider the solution
�i

�1,2�=�t. With this solution, system �1�becomes

� = � − Af�n��� − Bh���� . �12�

Along with this relation, the condition Af��n���+Bh�����
0 should also be satisfied in order that the synchronized
state is stable. This provides the stability regime

B =
− Af��n��

h����
; � =

�

� − Af�n�� − Bh���
, �13�

where �=��. The parametric forms �11� and �13� separate
the regions of desynchronization and synchronization. For
�f ,h�= �sin��� , cos����, these boundaries are plotted in Fig.
10.

A homogeneous perturbation �i
�1,2�=�t+���1,2� pertaining

to the case when all the phases remain equal while their
rotation becomes nonuniform in time to the synchronization
regimes leads to the following equations for stability

��̇1 = − �Af��n�� + Bh�������1 + Af��n����1n�

− Bh������1�, �14�

��̇2 = − �Af��n�� + Bh�������2 + Af��n����2n�

+ Bh������2�, �15�

where ���1,2�=���1�����2�. The stability of the fixed point
���1,2�=0 represents the global synchronization and indi-
vidual synchronization of the populations. This is because,
when ���1�=0, ���1�=���2�, and therefore both the popula-
tions are synchronized with the same entrainment phase.
When ���2�=0, ���1�=−���2� and hence both the popula-
tions are synchronized with different entrainment phase, the
difference in the entrainment phase being 2���1�. The stabil-
ity conditions for Eq. �14� for the cases n=0 and 1 are �15�

Bh����  0, n = 0,

Af���� + Bh����  	Af���� − Bh����	, n = 1. �16�

In both the above mentioned cases, the stability conditions
for Eq. �15� are

�Bh���� + 1  0, n = 0,

��Af���� + Bh����� + 1  0, n = 1. �17�

For �f ,h�= �sin��� , cos����, the boundaries �16� and �17� are
plotted in Fig. 10. The regions bounded by dot-dashed and
dotted curves correspond to in-phase ��i

�1�−�i
�2�=0� and an-

tiphase ��i
�1�−�i

�2�= ��� synchronization states of Eq. �16�,
respectively. Similarly, the regions bounded by � and · cor-
respond to in-phase and antiphase synchronization states of
Eq. �17�.
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The stability boundaries between regions of the synchro-
nized �both global and individual� and desynchronized states
can be obtained using Eqs. �11�, �13�, �16�, and �17�. From
these equations it becomes evident that the stability of the
synchronized and the desynchronized states switch periodi-
cally between stable and unstable states on increasing/
decreasing �, since h and f are 2� periodic. This also de-
pends on the signs of A and B. From Fig. 10, it is obvious
that on increasing �, the regions of synchronization and de-
synchronization alternate each other. The chimera/GCC
states can be expected near the stability boundaries of the
synchronized and desynchronized states and hence the
chimera/GCC states also repeat periodically on increasing �.
This is evident from Fig. 10 where the numerical occurrence
of the different chimera/GCC states, given in Table I �mark-
ings 1–8 in Fig. 10 �left�� and Fig. 7 �markings 1–4 in Fig.
10 �right�� are near the analytical synchronization/
desychronization boundaries. Note the �bistable� coexistence
of globally synchronized state and desynchronized state �that
is marking 8 in Fig. 10 �left� occurs inside region I� due to
the effect of time delay. Thus the stability analysis, while
clearly pointing out the boundaries between synchronized
and desynchronized states, also indicates the occurrence of
chimera and GCC states.

VI. APPLICATIONS

It is well known that synchronization is not always desir-
able. For example, in the brain synchronization is desirable
when it supports cognition via temporal coding of informa-
tion �14,16� while at the same time, it is undesirable when
synchronization of a mass of neuronal oscillators occurs at a
particular frequency band resulting in pathologies such as
trauma, Parkinson tremor, and so on. Other examples include
lasers and Josephson junction arrays �17�, emission of micro-
wave frequencies by coupled spin torque nano-oscillators

�18� where synchronization is desirable, while in the case of
epileptic seizures �19�, Parkinson tremor �20�, event-related
desynchronization �21�, or pedestrians on the millennium
bridge �10�, it is undesirable.

In the field of neuroscience, event-related synchroniza-
tion, and desynchronization of brain waves play a vital role
in controlling higher level information processing, large
scale integration and motor control and can be explained by
models of diffusively coupled oscillators �22�. A thalamocor-
tical model of three populations of neurons �14� to simulate
the state of emergence from deep to light anæsthesia explains
that successful coding of information and consciousness �on
emergence from deep anesthesia� is achieved by the occur-
rence of global synchronization between the thalamus and
the cortex. In the corresponding experiment �23�, during
deep anæsthesia � waves �frequency in the range 1–4 Hz�
occur with a high amplitude in the electroencephalogram
�EEG�.

On emergence from deep to light anæsthesia the � wave
amplitude is dramatically decreased and � �frequency in the
range 4–8 Hz� waves begin to emerge in the EEG, however
with lower amplitude compared to that of the � waves. The
model demonstrates that, during deep anesthesia, there is
strong synchronization in the cortex giving rise to high am-
plitude � waves. At the same time the neuronal oscillators in
the thalamus are very poorly synchronized �which is similar
to a chimera state� giving rise to very low amplitude � waves
and hence are not predominantly visible in the EEG. On
emergence from deep to light anesthesia some neuronal os-
cillators from the cortex desynchronize �and hence the dra-
matic decrease in the amplitude of � waves� and combine
with those in the thalamus to give rise to � waves that are not
as strongly synchronized as the � waves during deep anæs-
thesia. This state may be considered as a state similar to a
GCC state where neuronal oscillators from both the thalamus
and cortex combine to form a synchronized group. The chi-
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FIG. 10. �Color online� Theoretically obtained stability regions for n=0 �left� and n=1 �right�, I. Desynchronization, II. Synchronization
of the populations individually and III. Global synchronization. Here �f ,h�= �sin��� , cos����. Boundaries with � and � represent, respec-
tively, + and − signs in Eq. �11�. These boundaries are the same as those for the in-phase and antiphase synchronization states obtained from
Eq. �13�. Dot-dashed and dashed curves correspond to in-phase and antiphase synchronization states of Eq. �16�. The regions bounded by +
�!!!—� and � ����� correspond to in-phase and antiphase synchronization states of Eq. �17�. The markings with � denote the numerical
examples; �left� 1–8 correspond to the states denoted in Table I and �right� 1–4 correspond to panels �a�, �c�, �e�, and �g� of Fig. 7. Note the
numerical occurrence of the different chimera/GCC states near the analytical boundaries of synchronized and desynchronized states.
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mera and the GCC like states play a crucial role in the emer-
gence from deep to light anesthesia and also in blocking
information transfer during deep anesthesia �so that one does
not feel pain� and for successful coding of information dur-
ing light anesthesia. Thus throughout the processes that take
place in the brain the transmission delay in the propagation
of neuronal signals causes the chimera and GCC like states
to occur, that in turn facilitates the successful accomplish-
ment of various tasks.

Another example prevails in the field of nanotechnology
where the problem of synchronizing one or more populations
of spin torque nano-oscillators at different columns to gener-
ate coherent microwave power is still open �18�. By success-
fully modeling such a system using delay coupled popula-
tions of oscillators and exactly knowing where in parameter
space the chimera/GCC occurs, one would be able to tune
the system parameters, having the time delay parameter as
the control parameter so to avoid the occurrence of a
chimera/GCC. It will then be possible to stabilize the system
in a state of complete synchronization.

VII. SUMMARY

To summarize, we have demonstrated that chimera and
GCC states exist in delay coupled phase oscillator popula-
tions. A system of two identical, delay-coupled populations
splits into two groups, one synchronized and the other de-
synchronized. The state is called chimera if one of the popu-
lations is synchronized while the other is desynchronized. On
the other hand, the state is called a GCC if each group has a

fraction of oscillators from both the populations. We have
found that these states need not be stable always but can
breathe periodically, aperiodically, or become unstable, de-
pending upon the value of coupling delay. In order to char-
acterize the stable, unstable and breathing GCC states we
have introduced a modified version of the order parameter
that incorporates the mean of only the desynchronized group
by neglecting the synchronized group of oscillators.

We also found that multiclustered states exist as link be-
tween the chimera and GCC states, as the value of the time
delay parameter is increased. We have provided analytical
explanations of the observed effects on the basis of linear
stability theory. Based on these results, we suggest that mod-
els that incorporate time delay serve as good candidates to
explain many complicated natural phenomena as opposed to
models without time delay. There are various methods to
control synchronization �even its rate and velocity�. One can
choose regimes of synchronization or desynchronization de-
pending upon coupling strengths, initial distribution of fre-
quencies, the form of the coupling functions, and so on. The
message of the paper is that knowledge about the occurrence
of chimera, GCC, and multicluster states will help one to
achieve a good control over synchronization and desynchro-
nization in interacting populations of neurons, spin torque
nano-oscillators and similar systems.
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